We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Evaluation of Engine Oil Aeration Resistance in a Caterpillar C13 Direct-Injected Turbocharged Automotive Diesel Engine
Translate name
STANDARD published on 1.3.2023
Designation standards: ASTM D8047-23
Publication date standards: 1.3.2023
SKU: NS-1141598
The number of pages: 44
Approximate weight : 132 g (0.29 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
automotive, Caterpillar C13, COAT, diesel engine oil, heavy-duty diesel engine, lubricants, oil aeration,, ICS Number Code 75.100 (Lubricants, industrial oils and related products)
Significance and Use | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5.1?BackgroundPrior to this test method, the ability of an engine lubricant to resist aeration was measured by the engine oil aeration test (EOAT) described in Test Method D6894. The continued availability of engine parts coupled with field service aeration problems led to concerns about the relevance of this test method to newer oil and engine technologies. These concerns prompted the development of this new engine oil aeration test method, based on the Caterpillar C13 engine and termed COAT. This test method aims to provide a more reliable measurement of the ability of a lubricant to resist aeration during engine operation in field service. The engine used is of current technology and the aeration measurement is operator independent. 5.2?Test MethodThis test method evaluates aeration performance under high-engine-speed, zero-load operation in a turbocharged, heavy-duty, four-stroke diesel engine. 5.3?Use:? 5.3.1?The tendency of engine oils to aerate in direct-injection, turbocharged diesel engines is influenced by a variety of factors, including engine oil formulation, oil temperature, sump design and capacity, residence time of the oil in the sump, and the design of the pressurized oil systems. In some engine oil-activated systems, the residence time of the oil in the sump is insufficient to allow dissipation of aeration from the oil. As a consequence, aerated oil can be circulated to hydraulically activated components, adversely affecting the engine timing characteristics and engine operation. 5.3.2?The results from this test method may be compared against specification requirements such as Specification D4485 to ascertain acceptance. 5.3.3?The design of the test engine used in this test method is representative of many, but not all, diesel engines. This factor, along with the unique operating conditions, needs to be considered when comparing the test results against specification requirements. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Scope | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.1?This test method evaluates an engine oil's resistance to aeration in automotive diesel engine service. It is commonly referred to as the Caterpillar-C13 Engine-Oil Aeration Test (COAT). The test is conducted under high-engine-speed (1800 r/min), zero-load conditions using a specified Caterpillar 320 kW, direct-injection, turbocharged, after-cooled, six-cylinder diesel engine designed for heavy-duty, on-highway truck use. This test method was developed as a replacement for Test Method D6894. Note 1:?Companion test methods used to evaluate engine oil
performance for specification requirements are discussed in the
latest revision of Specification D4485.
1.2?The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1?ExceptionWhere there is no direct SI equivalent, for example, screw threads, national pipe threads/diameters, and tubing size. 1.3?This test method is arranged as follows:
1.4?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2025-02-07 (Number of items: 2 224 292)
© Copyright 2025 NORMSERVIS s.r.o.